13 research outputs found

    Parameterized Analysis of the Cops and Robber Game

    Get PDF
    Pursuit-evasion games have been intensively studied for several decades due to their numerous applications in artificial intelligence, robot motion planning, database theory, distributed computing, and algorithmic theory. Cops and Robber (CnR) is one of the most well-known pursuit-evasion games played on graphs, where multiple cops pursue a single robber. The aim is to compute the cop number of a graph, k, which is the minimum number of cops that ensures the capture of the robber. From the viewpoint of parameterized complexity, CnR is W[2]-hard parameterized by k [Fomin et al., TCS, 2010]. Thus, we study structural parameters of the input graph. We begin with the vertex cover number (vcn). First, we establish that k ? vcn/3+1. Second, we prove that CnR parameterized by vcn is FPT by designing an exponential kernel. We complement this result by showing that it is unlikely for CnR parameterized by vcn to admit a polynomial compression. We extend our exponential kernels to the parameters cluster vertex deletion number and deletion to stars number, and design a linear vertex kernel for neighborhood diversity. Additionally, we extend all of our results to several well-studied variations of CnR

    On the Cop Number of String Graphs

    Get PDF
    Cops and Robber is a well-studied two-player pursuit-evasion game played on a graph, where a group of cops tries to capture the robber. The cop number of a graph is the minimum number of cops required to capture the robber. We show that the cop number of a string graph is at most 13, improving upon a result of Gaven?iak et al. [Eur. J. of Comb. 72, 45-69 (2018)]. Using similar techniques, we also show that four cops have a winning strategy for a variant of Cops and Robber, named Fully Active Cops and Robber, on planar graphs, addressing an open question of Gromovikov et al. [Austr. J. Comb. 76(2), 248-265 (2020)]

    Further results on the Hunters and Rabbit game through monotonicity

    Full text link
    Hunters and Rabbit game is played on a graph GG where the Hunter player shoots at kk vertices in every round while the Rabbit player occupies an unknown vertex and, if not shot, must move to a neighbouring vertex after each round. The Rabbit player wins if it can ensure that its position is never shot. The Hunter player wins otherwise. The hunter number h(G)h(G) of a graph GG is the minimum integer kk such that the Hunter player has a winning strategy (i.e., allowing him to win whatever be the strategy of the Rabbit player). This game has been studied in several graph classes, in particular in bipartite graphs (grids, trees, hypercubes...), but the computational complexity of computing h(G)h(G) remains open in general graphs and even in trees. To progress further, we propose a notion of monotonicity for the Hunters and Rabbit game imposing that, roughly, a vertex that has already been shot ``must not host the rabbit anymore''. This allows us to obtain new results in various graph classes. Let the monotone hunter number be denoted by mh(G)mh(G). We show that pw(G)≤mh(G)≤pw(G)+1pw(G) \leq mh(G) \leq pw(G)+1 for any graph GG with pathwidth pw(G)pw(G), implying that computing mh(G)mh(G), or even approximating mh(G)mh(G) up to an additive constant, is NP-hard. Then, we show that mh(G)mh(G) can be computed in polynomial time in split graphs, interval graphs, cographs and trees. These results go through structural characterisations which allow us to relate the monotone hunter number with the pathwidth in some of these graph classes. In all cases, this allows us to specify the hunter number or to show that there may be an arbitrary gap between hh and mhmh, i.e., that monotonicity does not help. In particular, we show that, for every k≥3k\geq 3, there exists a tree TT with h(T)=2h(T)=2 and mh(T)=kmh(T)=k. We conclude by proving that computing hh (resp., mhmh) is FPT parameterised by the minimum size of a vertex cover.Comment: A preliminary version appeared in MFCS 2023. Abstract shortened due to Arxiv submission requirement

    Recontamination Helps a Lot to Hunt a Rabbit

    Get PDF
    The Hunters and Rabbit game is played on a graph G where the Hunter player shoots at k vertices in every round while the Rabbit player occupies an unknown vertex and, if it is not shot, must move to a neighbouring vertex after each round. The Rabbit player wins if it can ensure that its position is never shot. The Hunter player wins otherwise. The hunter number h(G) of a graph G is the minimum integer k such that the Hunter player has a winning strategy (i.e., allowing him to win whatever be the strategy of the Rabbit player). This game has been studied in several graph classes, in particular in bipartite graphs (grids, trees, hypercubes...), but the computational complexity of computing h(G) remains open in general graphs and even in more restricted graph classes such as trees. To progress further in this study, we propose a notion of monotonicity (a well-studied and useful property in classical pursuit-evasion games such as Graph Searching games) for the Hunters and Rabbit game imposing that, roughly, a vertex that has already been shot "must not host the rabbit anymore". This allows us to obtain new results in various graph classes. More precisely, let the monotone hunter number mh(G) of a graph G be the minimum integer k such that the Hunter player has a monotone winning strategy. We show that pw(G) ? mh(G) ? pw(G)+1 for any graph G with pathwidth pw(G), which implies that computing mh(G), or even approximating mh(G) up to an additive constant, is NP-hard. Then, we show that mh(G) can be computed in polynomial time in split graphs, interval graphs, cographs and trees. These results go through structural characterisations which allow us to relate the monotone hunter number with the pathwidth in some of these graph classes. In all cases, this allows us to specify the hunter number or to show that there may be an arbitrary gap between h and mh, i.e., that monotonicity does not help. In particular, we show that, for every k ? 3, there exists a tree T with h(T) = 2 and mh(T) = k. We conclude by proving that computing h (resp., mh) is FPT parameterised by the minimum size of a vertex cover

    Algorithms and Complexity for Geodetic Sets on Planar and Chordal Graphs

    Get PDF
    We study the complexity of finding the geodetic number on subclasses of planar graphs and chordal graphs. A set S of vertices of a graph G is a geodetic set if every vertex of G lies in a shortest path between some pair of vertices of S. The Minimum Geodetic Set (MGS) problem is to find a geodetic set with minimum cardinality of a given graph. The problem is known to remain NP-hard on bipartite graphs, chordal graphs, planar graphs and subcubic graphs. We first study MGS on restricted classes of planar graphs: we design a linear-time algorithm for MGS on solid grids, improving on a 3-approximation algorithm by Chakraborty et al. (CALDAM, 2020) and show that MGS remains NP-hard even for subcubic partial grids of arbitrary girth. This unifies some results in the literature. We then turn our attention to chordal graphs, showing that MGS is fixed parameter tractable for inputs of this class when parameterized by their treewidth (which equals the clique number minus one). This implies a linear-time algorithm for k-trees, for fixed k. Then, we show that MGS is NP-hard on interval graphs, thereby answering a question of Ekim et al. (LATIN, 2012). As interval graphs are very constrained, to prove the latter result we design a rather sophisticated reduction technique to work around their inherent linear structure

    Complexity and Algorithms for ISOMETRIC PATH COVER on Chordal Graphs and Beyond

    Get PDF
    A path is isometric if it is a shortest path between its endpoints. In this article, we consider the graph covering problem Isometric Path Cover, where we want to cover all the vertices of the graph using a minimum-size set of isometric paths. Although this problem has been considered from a structural point of view (in particular, regarding applications to pursuit-evasion games), it is little studied from the algorithmic perspective. We consider Isometric Path Cover on chordal graphs, and show that the problem is NP-hard for this class. On the positive side, for chordal graphs, we design a 4-approximation algorithm and an FPT algorithm for the parameter solution size. The approximation algorithm is based on a reduction to the classic path covering problem on a suitable directed acyclic graph obtained from a breadth first search traversal of the graph. The approximation ratio of our algorithm is 3 for interval graphs and 2 for proper interval graphs. Moreover, we extend the analysis of our approximation algorithm to k-chordal graphs (graphs whose induced cycles have length at most k) by showing that it has an approximation ratio of k+7 for such graphs, and to graphs of treelength at most ?, where the approximation ratio is at most 6?+2

    Complexity and algorithms for Isometric Path Cover on chordal graphs and beyond

    No full text
    A path is isometric if it is a shortest path between its endpoints. In this article, we consider the graph covering problem Isometric Path Cover, where we want to cover all the vertices of the graph using a minimum-size set of isometric paths. Although this problem has been considered from a structural point of view (in particular, regarding applications to pursuit-evasion games), it is little studied from the algorithmic perspective. We consider Isometric Path Cover on chordal graphs, and show that the problem is NP-hard for this class. On the positive side, for chordal graphs, we design a 4-approximation algorithm and an FPT algorithm for the parameter solution size. The approximation algorithm is based on a reduction to the classic path covering problem on a suitable directed acyclic graph obtained from a breadth first search traversal of the graph. The approximation ratio of our algorithm is 3 for interval graphs and 2 for proper interval graphs. Moreover, we extend the analysis of our approximation algorithm to k-chordal graphs (graphs whose induced cycles have length at most k) by showing that it has an approximation ratio of k + 7 for such graphs, and to graphs of treelength at most â„“, where the approximation ratio is at most 6â„“ + 2

    Complexity and algorithms for Isometric Path Cover on chordal graphs and beyond

    No full text
    A path is isometric if it is a shortest path between its endpoints. In this article, we consider the graph covering problem Isometric Path Cover, where we want to cover all the vertices of the graph using a minimum-size set of isometric paths. Although this problem has been considered from a structural point of view (in particular, regarding applications to pursuit-evasion games), it is little studied from the algorithmic perspective. We consider Isometric Path Cover on chordal graphs, and show that the problem is NP-hard for this class. On the positive side, for chordal graphs, we design a 4-approximation algorithm and an FPT algorithm for the parameter solution size. The approximation algorithm is based on a reduction to the classic path covering problem on a suitable directed acyclic graph obtained from a breadth first search traversal of the graph. The approximation ratio of our algorithm is 3 for interval graphs and 2 for proper interval graphs. Moreover, we extend the analysis of our approximation algorithm to k-chordal graphs (graphs whose induced cycles have length at most k) by showing that it has an approximation ratio of k + 7 for such graphs, and to graphs of treelength at most â„“, where the approximation ratio is at most 6â„“ + 2

    Complexity and algorithms for Isometric Path Cover on chordal graphs and beyond

    No full text
    A path is isometric if it is a shortest path between its endpoints. In this article, we consider the graph covering problem Isometric Path Cover, where we want to cover all the vertices of the graph using a minimum-size set of isometric paths. Although this problem has been considered from a structural point of view (in particular, regarding applications to pursuit-evasion games), it is little studied from the algorithmic perspective. We consider Isometric Path Cover on chordal graphs, and show that the problem is NP-hard for this class. On the positive side, for chordal graphs, we design a 4-approximation algorithm and an FPT algorithm for the parameter solution size. The approximation algorithm is based on a reduction to the classic path covering problem on a suitable directed acyclic graph obtained from a breadth first search traversal of the graph. The approximation ratio of our algorithm is 3 for interval graphs and 2 for proper interval graphs. Moreover, we extend the analysis of our approximation algorithm to k-chordal graphs (graphs whose induced cycles have length at most k) by showing that it has an approximation ratio of k + 7 for such graphs, and to graphs of treelength at most â„“, where the approximation ratio is at most 6â„“ + 2. * This research was partially financed by the IFCAM project "Applications of graph homomorphisms" (MA/IFCAM/18/39), the ANR project GRALMECO (ANR-21-CE48-0004-01) and the French government IDEX-ISITE initiative 16-IDEX-0001 (CAP 20-25)
    corecore